10 research outputs found

    Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network

    Get PDF
    Reverse image search has been a vital and emerging research area of information retrieval. One of the primary research foci of information retrieval is to increase the space and computational efficiency by converting a large image database into an efficiently computed feature database. This paper proposes a novel deep learning-based methodology, which captures channel-wise, low-level details of each image. In the first phase, sparse auto-encoder (SAE), a deep generative model, is applied to RGB channels of each image for unsupervised representational learning. In the second phase, transfer learning is utilized by using VGG-16, a variant of deep convolutional neural network (CNN). The output of SAE combined with the original RGB channel is forwarded to VGG-16, thereby producing a more effective feature database by the ensemble/collaboration of two effective models. The proposed method provides an information rich feature space that is a reduced dimensionality representation of the image database. Experiments are performed on a hybrid dataset that is developed by combining three standard publicly available datasets. The proposed approach has a retrieval accuracy (precision) of 98.46%, without using the metadata of images, by using a cosine similarity measure between the query image and the image database. Additionally, to further validate the proposed methodology’s effectiveness, image quality has been degraded by adding 5% noise (Speckle, Gaussian, and Salt pepper noise types) in the hybrid dataset. Retrieval accuracy has generally been found to be 97% for different variants of nois

    Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer Detection in Imbalanced Data Sets

    No full text
    Early diagnosis plays a key role in prevention and treatment of skin cancer. Several machine learning techniques for accurate detection of skin cancer from medical images have been reported. Many of these techniques are based on pre-trained convolutional neural networks (CNNs), which enable training the models based on limited amounts of training data. However, the classification accuracy of these models still tends to be severely limited by the scarcity of representative images from malignant tumours. We propose a novel ensemble-based convolutional neural network (CNN) architecture where multiple CNN models, some of which are pre-trained and some are trained only on the data at hand, along with auxiliary data in the form of metadata associated with the input images, are combined using a meta-learner. The proposed approach improves the model's ability to handle limited and imbalanced data. We demonstrate the benefits of the proposed technique using a dataset with 33,126 dermoscopic images from 2056 patients. We evaluate the performance of the proposed technique in terms of the F1-measure, area under the ROC curve (AUC-ROC), and area under the PR-curve (AUC-PR), and compare it with that of seven different benchmark methods, including two recent CNN-based techniques. The proposed technique compares favourably in terms of all the evaluation metrics.Peer reviewe
    corecore